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Controlled formalized operators with multiple 
control bits 

Nikolay Raychev 
 

Abstract—In this report is examined the construction of controlled operators, that include more than one control or target bit. In the 
research is examined a general class of n qubit operators, that use one or more control bits to conditionally apply an operator to a single 
target qubit.  The conditional nature of these operators is controlled by a boolean function f, that acts on a set of control bits C.  

Index Terms— boolen function, circuit, composition, encoding, gate, phase, quantum.   

——————————      —————————— 

1 INTRODUCTION                                                                     
In this report is examined the construction of controlled opera-
tors, that include more than one control or target bit, based on 
a formalized qubit operator.  This work is part of the devel-
oped from the author formalized system for design of algo-
rithmic models for quantum circuits, based on phase encod-
ing, decoding and parameterization of primitive quantum 
operators. In previous publications of the author [6, 7, 8] were 
defined several sets of operators on the n qubit, that generalize 
certain classical characteristics: identity and logical negation. 
For the construction of the controlled operators, that include 
more than one control or target bit, may be needed nontrivial 
combinations of elementary operators. Instead of directly 
addressing the construction of such operators from elementary 
components, the focus will be on several methods for opera-
tion with formalized operators in a more extensive system of 
summary controlled operators. For development of the con-
struction of such operators may be examined the work of 
Barenco. Here will be discussed a general class of n qubit op-
erators, that use one or more control bits to conditionally ap-
ply an operator to a single target qubit. The conditional nature 
of these operators is controlled by a boolean function f, that 
acts on a set of the control bits C.  
 
2 PARALLEL APPLICATION OF SINGLE 

QUBIT OPERATORS 
When a sequence of single qubit operators do not target the 
same qubit, then Theorem 3.3.1.8 shows that they swap and 
may effectively be applied in a different order. Therefore it can 
be said that they can be applied in parallel and viewed as a 
single n qubit operator. The canonical example of such compo-
sition is the application of the Hadamard operator to all or 
most of the qubits in a register that occurs at the beginning 
and end of many quantum algorithms. Theorem 1 characteriz-
es parallel arrays of elementary indexed  
operators and provides formulas for their aggregate encoding 
and amplitude effects. 
 
Theorem 1 If 𝑃 = {(𝑡,𝛼, 𝛾𝛾𝛾)} is a set of operator parameters such 
that no pair of the parameter sets in P share a target bit t. Then the 
operator U(P) is the n qubit operator  
formed by the composition of the operators. If a given input basis x 
∈ 𝔹𝑛 and output basis y ∈ 𝔹𝑛, 
⟨𝑦|𝑈(𝑃)|𝑥⟩ = (−1)𝜀∗(𝑃)𝑥⨁𝑦(𝑥)𝑎∗(𝑥,𝑦,𝑃)         (1) 

 
With a function 𝛼∗, defined as 
𝑎∗(𝑥, 𝑦,𝑃) = ∏ �𝑎𝑝

𝑥𝑡𝑝⊕𝑦𝑡𝑝�������������
𝑝∈𝑃 �1− 𝑎𝑝

𝑥𝑡𝑝⊕𝑦𝑡𝑝     
   (3.4.2) 
and 2𝑛-tuple of 𝑛 bit boolean functions 𝐸∗(𝑃) with the i-th 
element 𝐸∗(𝑃)𝑖, defined as 
𝜀 ∗ (𝑃)𝑖(𝑥) = ⨁

𝑝 ∈ 𝑃 𝜀′�(𝑎, 𝛾𝛾𝛾)𝑝�𝑖𝑡𝑝
�𝑥𝑡𝑝�       (2) 

Proof. From corollary 3.1.7 it can be seen that for all p ∈ 𝑃, 
where the output data differ from the input at bit 𝑡𝑝, is applied 
an amplitude divider �1− 𝛼𝑝, otherwise is applied �𝛼𝑝. This 
logic is captured by the formula 
 

�𝑎𝑝
𝑥𝑡𝑝⊕𝑦𝑡𝑝�������������

 �1− 𝑎𝑝
𝑥𝑡𝑝⊕𝑦𝑡𝑝 

Thus the function 𝛼∗ correctly calculates the magnitude of 
⟨𝑦|𝑈(𝑃)|𝑥⟩. In order to calculate correctly the phase of 
⟨𝑦|𝑈(𝑃)|𝑥⟩ first should be noted that, when 𝑡𝑝 differs in x and 
y, then the encoding function ℰ((𝛾𝛾𝛾)𝑝)1 is used, otherwise - 
ℰ((𝛾𝛾𝛾)𝑝)0 is used. As can be seen, the index of the encoding 
function is exactly 𝑥𝑡𝑝⨁𝑦𝑡𝑝. According to corollary 3.1.7, if it is 
given that the permutation function for one operator does not 
change the bit on which any other individual encoding func-
tion is acting, then each encoding function is applied to the 
unchanged value of 𝑥𝑡𝑝. Thus, it appears that 𝐸∗(𝑃) correctly 
calculates the phase encoding  
function of ⟨𝑦|𝑈(𝑃)|𝑥⟩. From Theorem 1 any arbitrary parallel 
array of elementary indexed operators can be characterized by 
an aggregate encoding and decoding operation. However, the 
encoding functions of 𝑈(𝑃) as calculated by 𝐸∗(𝑃) are unsim-
plified. Given that they are constructed in a conventional way 
and use elements of ℬ1 it is possible to be a substantial simpli-
fication. 
 
Simplification of Phase Encoding Functions 
Since the CONST functions produce results, that are inde-
pendent of their input data, it is always possible to reduce 
their presence in an encoding function to a single occurrence 
of ZERO or ONE. 
 
Theorem 2 If 𝐹 = {𝑓𝑖|𝑓𝑖 ∈ 𝐶𝐶𝐶𝐶𝐶}. Then x is a binary number in 
𝔹𝑛, such that 
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 𝜙𝐹(𝑥) =  
𝑛
⨁

𝑖 = 1
𝑓𝑖𝑥𝑖 

and 
𝜙𝐹(𝑥) = �𝐶𝐶𝐸     when 𝑙 is odd

𝑍𝐸𝑍𝐶  otherwise        (3) 
 
where 𝑙 = |{𝑖|𝑓𝑖 = 𝐶𝐶𝐸}|. 
Proof. The CONST functions produce results that are inde-
pendent of their input data. Therefore can be selected arbitrary 
bit b and replaced each 𝑥𝑖 in 𝜙𝐹(𝑥) with b, reducing 𝜙𝐹(𝑥) 
from a function in 𝔹𝑛 → 𝔹 to a function in the Abelian group 
(ℬ1,⨁). After this 𝜙𝐹(𝑥) can be rearranged such that all occur-
rences of ZERO to precede those of ONE, from where is ob-
tained the formula 
𝜙𝐹(𝑥) = (𝑍𝐸𝑍𝐶 ⨁𝑘⨁𝐶𝐶𝐸 ⨁𝑙)(𝑏) 
where k, l ≥ 0 are the number of occurrences of ZERO and 
ONE respectively and therefore k + l = n. From Theorem  
2.2.2.3, 𝑍𝐸𝑍𝐶 ⨁𝑘 = 𝑍𝐸𝑍𝐶, leaving 
𝜙𝐹(𝑥) = (𝑍𝐸𝑍𝐶 ⨁𝐶𝐶𝐸 ⨁𝑙)(𝑏) = 𝐶𝐶𝐸 ⨁𝑙(𝑏) 
Again, by Theorem 2.2.2.3, this is ONE, where l is odd, and 
ZERO – otherwise. 
All occurrences of constant functions in an encoding function 
can be eliminated, so that the encoding function can be rewrit-
ten as a boolean expression of 𝑚 ≤ 𝑛 variables, comprised of 
BAL functions, combined with ⨁ or °. 
 
Theorem 3 If Φ is a boolean function over n bits, corresponding to 
an expression from f the formula 
𝜙𝐹(𝑥) =  

𝑛 − 1
⨁

𝑖 = 0
𝑓𝑖𝑥𝑖 

Then there exists an equivalent formula over 𝑚 ≤ 𝑛 bits that also 
expresses Φ, where 𝑚 is the number of 𝑓𝑖, which are in BAL such 
that 

𝜙𝐹(𝑥) = �

⨁
𝑓𝑖 ∈ 𝐵𝐵𝐵

𝑓𝑖(𝑥𝑖)     if 
⨁

𝑓𝑗 ∈ 𝐶𝐶𝐶𝐶𝐶 𝑓𝑗�𝑥𝑗� = 𝑍𝐸𝑍𝐶

𝐶𝐶𝐶( ⨁
𝑓𝑖 ∈ 𝐵𝐵𝐵

𝑓𝑖(𝑥𝑖))  if 
⨁

𝑓𝑗 ∈ 𝐶𝐶𝐶𝐶𝐶
= 𝐶𝐶𝐸

 

 
Proof. By theorem 2 can be reduced all k occurrences of CONST 
functions to ZERO or ONE, thus leaving an expression of n – k 
BAL functions and one CONST function, combined with the 
operator ⨁ such that, 
𝜙𝐹(𝑥) ∈

�𝐶𝐶𝐸 ⨁�
⨁

𝑓𝑖 ∈ 𝐵𝐵𝐵
𝑓𝑖(𝑥𝑖)     � ,𝑍𝐸𝑍𝐶 ⨁�

⨁
𝑓𝑖 ∈ 𝐵𝐵𝐵

𝑓𝑖(𝑥𝑖)     ��  

Given that 

𝐶𝐶𝐸 ⨁�
⨁

𝑓𝑖 ∈ 𝐵𝐵𝐵
𝑓𝑖(𝑥𝑖)�

= 𝐶𝐶𝐶�
⨁

𝑓𝑖 ∈ 𝐵𝐵𝐵
𝑓𝑖(𝑥𝑖)�  𝑎𝑛𝑎 𝐶𝐶𝐸 �⨁

⨁
𝑓𝑖 ∈ 𝐵𝐵𝐵

𝑓𝑖(𝑥𝑖)�

= ⨁
𝑓𝑖 ∈ 𝐵𝐵𝐵

𝑓𝑖(𝑥𝑖) 

then it’s true that Φ𝐹  reduces to a boolean function of 𝑛 − 𝑘 ≤
𝑛 variables. 
Given that all operators extract their encoding functions ℰ 
from (𝐵𝐵𝐵 × 𝐶𝐶𝐶𝐶𝐶) ∪ (𝐶𝐶𝐶𝐶𝐶× 𝐵𝐵𝐵), Theorem 3.3.1.3  leads 
to a big simplification for the phase encoding functions. 

 
Operators of the form 𝑼⊗𝒏 
If until now the parallel composition of operators was dis-
cussed in general, here will be paid attention to the application 
of a single operator with noninteger amplitude to 𝑛 qubits. For 
such operators, the encoding function ℰ′ is the same as ℰ. 
 
Corollary 1 If 𝑝𝑛  is the set containing n instances of 𝑝 = (𝑡,𝛼,𝛾𝛾𝛾), 
that is  
the parameter set of n instances of a single operator applied in paral-
lel, and 𝐻:𝔹𝑛 × 𝔹𝑛 → {0,1, … ,𝑛} is the function determining the 
Hamming distance between two n bit strings. Then the value of the 
amplitude measurement, as calculated by 𝛼∗, is: 

𝑎∗(𝑥, 𝑦, 𝑝𝑛) = 𝑎
𝑛−𝐻𝑥,𝑦

2 (1− 𝑎)
𝐻𝑥,𝑦
2       (4) 

 
Proof. The above equation follows from 1, where 𝛼 is the same 
for each operator. 
A formula very similar to this one previously appeared in a 
paper by Grover [26]. In that paper it was used in a modifica-
tion of its search, that uses operators like those, given in equa-
tion 1.2, as opposed to the standard Hadamard operator. 
If 𝑃𝑎𝑃:𝔹𝑛 → 𝔹 is a parity function of 𝑥 ∈ 𝔹𝑛, such that 𝑃𝑎𝑃(𝑥) 
is 1, when 𝑥 is odd number 1, and 0 – otherwise. Then for 
𝑥, 𝑦 ∈ 𝔹𝑛 the function 𝑃𝑎𝑃(𝑥⨁𝑦) is equivalent of the parity 
function of the n bit binary representation of H(x, y). 
 
Corollary 2 If   𝐼 = {𝑖|(𝑥⨁𝑦)𝑖 = 1, 0 ≤ 𝑖 < 𝑛} are the locations 
at which two n bit numbers 𝑥 and 𝑦 differ, and 𝐼 ̅ = {𝑖|𝑖 ∉ 𝐼,
0 ≤ 𝑖 < 𝑛} the locations where they’re the same. Then for the 
intensional operators, i.e. where 𝛾 = 0,  

𝜀∗(𝑝𝑛)(𝑥) = �
𝐶𝐶𝐶( ⨁

𝑖 ∈ 𝐼 𝜀
′(𝛾𝛾𝛾)1(𝑥𝑖)) 𝑖 = 1 𝑎𝑛𝑎 Par(x⨁y������) = 1

⨁
𝑖 ∈ 𝐼 𝜀

′(𝛾𝛾𝛾)0(𝑥𝑖)                   𝑜𝑡ℎ𝑒𝑃𝑒𝑖𝑒𝑒
   

 (5) 
and for the extensional operators, i.e. where 𝛾 = 1, 
 

𝜀∗(𝑝𝑛)(𝑥) = �
𝐶𝐶𝐶( ⨁

𝑖 ∈ 𝐼 ̅𝜀
′(𝛾𝛾𝛾)0(𝑥𝑖)) 𝑛 = 1 𝑎𝑛𝑎 Par(x⨁y) = 1

⨁
𝑖 ∈ 𝐼 𝜀

′(𝛾𝛾𝛾)1(𝑥𝑖)                   𝑜𝑡ℎ𝑒𝑃𝑒𝑖𝑒𝑒
   

   (6) 
 
Proof. Both forms follow from theorems 1 and 6. 
Now can be determined general encoding functions for n 
qubit gates, composed of the parallel application of a single 
operator to one or more qubits.  
𝐼 = {𝑖|(𝑥⨁𝑦)𝑖 = 1, 0 ≤ 𝑖 < 𝑛} are the locations at which two n 
bit numbers 𝑥 and 𝑦 differ, and 𝐼 ̅ = {𝑖|𝑖 ∉ 𝐼, 0 ≤ 𝑖 < 𝑛} are the 
locations where they're the same. 
 
Table 8.1: Encoding function for the parallel application of n 
instances of 𝑈(𝛼, 𝛾𝛾𝛾) 
 
𝜀∗((𝑎, 000)𝑛)𝑥⨁𝑦 = ⨁

𝑖 ∈ 𝐼𝐼𝐼(𝑥𝑖)      

𝜀∗((𝑎, 001)𝑛)𝑥⨁𝑦 = ⨁
𝑖 ∈ 𝐼𝐶𝐶𝐶(𝑥𝑖) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   1472 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

𝜀∗((𝑎, 010)𝑛)𝑥⨁𝑦 = 𝐶𝐶𝐶 𝑃𝑎𝑟(𝑥⨁𝑦�������) ° ⨁𝑖 ∈ 𝐼𝐼𝐼(𝑥𝑖) 

𝜀∗((𝑎, 011)𝑛)𝑥⨁𝑦 = 𝐶𝐶𝐶 𝑃𝑎𝑟(𝑥⨁𝑦�������) ° ⨁𝑖 ∈ 𝐼𝐶𝐶𝐶(𝑥𝑖) 

𝜀∗((𝑎, 100)𝑛)𝑥⨁𝑦 = ⨁
𝑖 ∈ 𝐼�̅�𝐼

(𝑥𝑖)   

𝜀∗((𝑎, 101)𝑛)𝑥⨁𝑦 = 𝐶𝐶𝐶 𝑃𝑎𝑟(𝑥𝑦�) ° ⨁𝑖 ∈ 𝐼�̅�𝐼
(𝑥𝑖) 

𝜀∗((𝑎, 110)𝑛)𝑥⨁𝑦 = ⨁
𝑖 ∈ 𝐼�̅�𝐶𝐶

(𝑥𝑖) 

𝜀∗((𝑎, 111)𝑛)𝑥⨁𝑦 = 𝐶𝐶𝐶 𝑃𝑎𝑟(𝑥𝑦�) ° ⨁𝑖 ∈ 𝐼�̅�𝐶𝐶
(𝑥𝑖)      (7) 

 
Previously was discussed that one of the impulses for creation 
of the phase encoding/decoding system was the observation 
that for a given basis �𝑥⟩,  𝐻⊗𝑛|𝑥⟩ encodes (𝑥⦁𝑏)MOD2 to the 
phase of |𝑏⟩ in the resultant super-position. It should be noted 
that 𝐻⊗𝑛 = 𝑈({(1

2
, 100)}𝑛), then in the formalized system for 

designing of algorithmic models for quantum circuits the en-
coding function is written as 
⨁
𝑖 ∈ 𝐼�̅�𝐼

(𝑥𝑖) 

The set 𝐼 ̅ represents the indexes of places where 𝑏 and 𝑥 are 
the same. It can be seen that this formulation of the phase 
encoding for |𝑏⟩ is equivalent to 

𝑥⦁𝑏 = �𝑥𝑖𝑏𝑖

𝑛

𝑖=0

 MOD 2 

First, (∑ 𝑥𝑖𝑏𝑖𝑛
𝑖=0 ) is exactly the number of places where 𝑥 and 𝑏 

are both 1, and so 𝑥⦁𝑏 can be formulated as the even of 𝑥⨁𝑏. 
On the other hand, ⨁

𝑖 ∈ 𝐼�̅�𝐼
(𝑥𝑖) will be reduced to ID, applied 

to the subset of 𝐼 ̅in which 𝑥𝑖 = 1.  
If there are k elements of 𝐼,̅ meeting this condition then  
⨁
𝑖 ∈ 𝐼�̅�𝐼

(𝑥𝑖) = 𝐶𝐶𝐸⊗𝑘 
 
Thus, the phase encoding/decoding formulation of the phase 
of |𝑏⟩ as a boolean function of 𝑥 and 𝑏 is equivalent to the 
already published formula as bit-wise inner product. Equation 
8.8 provides an alternative formulation of the phase effects of 
 𝐻⊗𝑛, as well as a generalization to other  𝑈⊗𝑛 operators. 
 

3 CONTROLLED OPERATORS WITH MULTIPLE CONTROL 
BITS   
When a n qubit operator can be thought as a boolean function 
over all n variables, as all except the control bits being non-
essential variables. For convenience will be used f(C), desig-
nating the application of the boolean function f to the control 
bits. 
 
Definition 1 A n qubit conditional operator CU is formalized by 
the set of the bit indexes 𝐶 ⊂ {0,1, … ,𝑛 − 1}, the target bit index t, 
with 𝑡 ∉ 𝐶, control function 𝑓:𝔹|𝐶| → 𝔹 and formalized single qubit 
operators A and B such that, 

⟨𝑦|𝐶𝑈(𝐶, 𝑡, 𝑓,𝐵,𝐵)|𝑥⟩ = �
�𝑦�𝐵[𝑡]�𝑥�       𝑓(𝐶) = 0
�𝑦�𝐵[𝑡]�𝑥�       𝑓(𝐶) = 1

      (8) 

 
Note 1 When 𝑓 = 𝐼𝐼 and С = {с}, then 𝐶𝑈(𝐶, 𝑡,𝑓,𝐵,𝐵) =
𝐶𝑈(𝑐, 𝑡, 𝐼𝐼,𝐵,𝐵) = 𝐶𝑈(𝐶𝑈[𝑐][𝑡](𝐵,𝐵)) and the generalized con-
trolled operator of equation 8.9 captures the elementary two qubit 
controlled operator. If 𝐵 = 𝑈(𝛼𝐴,𝑝𝐴) and 𝐵 = 𝑈(𝛼𝐵 ,𝑝𝐵), then the 
matrix form of 𝐶 = 𝐶𝑈(𝐶, 𝑡, 𝐼𝐼,𝐵,𝐵) is defined such that, 

 
⟨𝑦|𝑉|𝑥⟩ =

 

⎩
⎪
⎨

⎪
⎧ (−1)ℰ(𝑝𝐴)0(𝑖𝑡)√𝛼𝐴 𝑓(𝐶) = 0  𝑎𝑛𝑎  𝑗 = 𝑖

(−1)ℰ(𝑝𝐴)1(𝑖𝑡)�1− 𝛼𝐴          𝑓(𝐶) = 0  𝑎𝑛𝑎  𝑗 = 𝑖⨁2𝑡

(−1)ℰ(𝑝𝐵)0(𝑖𝑡)√𝛼𝐵 𝑓(𝐶) = 1  𝑎𝑛𝑎  𝑗 = 𝑖
(−1)ℰ(𝑝𝐵)1(𝑖𝑡)�1− 𝛼𝐵          𝑓(𝐶) = 1  𝑎𝑛𝑎  𝑗 = 𝑖⨁2𝑡

0                                            𝑜𝑡ℎ𝑒𝑃𝑒𝑖𝑒𝑒

     (10) 

 
This generalizes the single control bit version by allowing 
multiple control bits and arbitrary control functions. For bool-
ean function 𝑓 ∈ ℬ𝑚, where m < n, the generalized controlled 
operator can be used to represent operators 𝑈ℬ𝑚|𝑛, as well as 𝛼 
degree versions of these operators. Theorem 1 describes the 
construction of an operator in the set 𝑈ℬ𝑚|𝑛 whereas theorem 
4.2.2, describes the construction of an 𝛼 degree version of a 
𝑈ℬ𝑚|𝑛 operator. 
 
Theorem 4 If operator 𝑉 = 𝐶𝑈(𝐶, 𝑡,𝑓,𝐵,𝐵) is such that 𝐵 ∈
Ех𝑡1,𝐵 ∈ 𝐶ех𝑡1 and 𝑓 ∈ ℬ𝑚, where m < n. Then 𝑉 ∈ 𝑈ℬ𝑚|𝑛. 
Proof. If it is assumed that 𝐵 ∈ Ех𝑡1 and 𝐵 ∈ 𝐶ех𝑡1, then for 
each n qubit basis |𝑥⟩, 

𝑉|𝑥⟩ = �
±|𝑥⟩               𝑓(𝐶) = 0
±|𝑥⨁2𝑡⟩       𝑓(𝐶) = 1            

= ±|𝑥⨁ 𝑓(𝐶)2𝑡⟩                  (9) 

Theorem 5  If operator 𝑉 = 𝐶𝑈(𝐶, 𝑡, 𝑓,𝐵,𝐵) is such that 𝐵 =
(𝛼, 𝑝𝐴) and 𝐵 = 𝑈(1− 𝛼, 𝑝𝐵). Then 𝑉 is an 𝛼 degree 𝑈ℬ𝑚|𝑛. 
Proof. If it is assumed that 𝐵 = (𝛼,𝑝𝐴) and 𝐵 = 𝑈(1− 𝛼, 𝑝𝐵). 
Then, for each n qubit basis |𝑥⟩, 
𝑉|𝑥⟩

= �
(−1)ℰ(𝑝𝐴)0(𝑥𝑡)√𝛼 |𝑥⟩+ (−1)ℰ(𝑝𝐴)1(𝑥𝑡)√1 − 𝛼 |𝑥⨁2𝑡⟩            𝑓(𝐶) = 0
(−1)ℰ(𝑝𝐵)0(𝑥𝑡)√𝛼 |𝑥⨁2𝑡⟩+ (−1)ℰ(𝑝𝐵)1(𝑥𝑡)√1 − 𝛼 |𝑥⟩            𝑓(𝐶) = 1

  

          = ±√𝛼|𝑥⨁ 𝑓(𝐶)2𝑡⟩  + ±√1− 𝛼|𝑥⨁ 𝑓̅(𝐶)2𝑡�      (10) 

Theorem 1  leads to general means for constructing of  𝛼 de-
gree 𝑈ℬ𝑚|𝑛 operators from an elementary indexed operator 
and an operator in 𝑈ℬ𝑚|𝑛. 
 
Theorem 6 If 𝑉 is an n qubit 𝑈ℬ𝑚|𝑛 operator with target bit t and 
𝐵[𝑡] is indexed, formalized operator with an amplitude parameter 𝛼, 
such that 0 < 𝛼 < 1. Then the operator VA is 𝛼 degree 𝑈ℬ𝑚|𝑛 oper-
ator. 
Proof. The proof follows from theorems 4 and 5,  by noting that 
when 𝑉 = 𝐶𝑈(𝐶, 𝑡, 𝑓,𝑈,𝑊), then 𝑉𝐵 = 𝐶𝑈(𝐶, 𝑡, 𝑓,𝑈𝐵,𝑊𝐵). 
 
Theorem 6 is important because, it captures a common occur-
rence in the quantum algorithms: setting the target bit of an 
Oracle operator to a superposition and then applying the ora-
cle operator. In the formalized system for designing of algo-
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rithmic models for quantum circuits this can be addressed in 
the context of an 𝛼 degree 𝑈ℬ𝑚|𝑛 operator. 
  

3 CONCLUSION 
This report describes a generalized controlled operator, that 
uses random boolean function over k < n bits, to control the 
application of a single qubit operator to a target bit in the n 
qubit space.  This form generalizes the results of the already 
established two qubit operator, as well as the standard Oracle 
operators, used frequently in the quantum algorithms. The 
previous development of the controlled operators as 𝑈ℬ1|𝑛 
operators is extended and completed in Theorem 6, that shows 
a method for constructing an 𝛼 degree of 𝑈ℬ𝑚|𝑛 operator from 
the new generalization of the controlled and indexed opera-
tors.  
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